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A B S T R A C T

Marine Protected Areas are rapidly becoming a central method for conservation of aquatic resources, but
quantifying the success of these reserves in restricting fishing remains a challenge. Monitoring fishing has long
been difficult - there are many types of fishers accessing resources in remote places from a diverse set of plat-
forms (e.g., boat types). We used aerial surveys in conjunction with a novel application of species distribution
modeling to develop a method for monitoring the change in fisher distributions following the implementation of
MPAs. Aerial survey transects were conducted for 3.5 years before and after the implementation of 25 MPAs
along the mainland southern California coast in 2012 and resulted in 13,558 vessel observations representing 19
different boat types. We compared actively fishing commercial and recreational vessels with non-fishing vessels
to evaluate the use of MPA areas. There was a statistically significant decrease in proportion of vessels observed
within MPAs from 17.5% before to 11.4% after MPA implementation, with MPA-implementation, fishing type,
and the interaction all predicting the probability of a vessel being observed within MPA boundaries. Distribution
models showed both an overall shift in distributions across all boat types and a decrease in predicted probability
of habitat suitability of fishing within MPA boundaries after MPA implementation, although results differed
among boat types. We illustrate the utility of distribution modeling for evaluating spatial patterns in human
activities, providing a powerful tool for conservation biologists and demonstrate the importance of monitoring
programs for establishing both baseline and response data needed for adaptive management of marine eco-
systems.

1. Introduction

As overfishing continues to increase globally (Pauly et al., 2003),
Marine Protected Areas (MPAs) are becoming a widely popular man-
agement strategy for protecting critical ecosystems (Edgar et al., 2014,
2007). By restricting harvest of marine resources, MPAs provide a
crucial refuge for species and improve overall ecosystem health. Within
MPAs, individuals grow larger, population sizes are larger (Lester et al.,
2009), and spillover even improves ecosystems outside of MPA
boundaries (Gell and Roberts, 2003). Yet, MPAs remain a challenge to
study, monitor, and enforce (Agardy et al., 2011), and they frequently
fail to fully limit illegal harvesting (Babcock et al., 2010; Edgar, 2011;
Mora et al., 2006). They sometimes cover large areas on the open
ocean, there is often a lack of baseline data, and traditional reporting
structures exist at a different spatial scale than most MPAs. Further the
socio-economic impacts of MPAs are difficult to predict (Gell and
Roberts, 2003; Hilborn et al., 2006), an important consideration given

the high cost of MPAs (Balmford et al., 2004). Novel methods are
needed to adequately measure the successes and failures of MPAs for
adaptive management. In this study, we use a unique approach in-
tegrating baseline research, aerial survey monitoring, and distribution
modeling to evaluate shifts in the distribution of fishers following MPA
implementation.

Understanding the success of any management approach requires
the collection of baseline data prior to implementation, and this is
especially true for studying the impacts of MPAs (Edgar et al., 2004).
Marine productivity is highly variable and if there is bias as to where
MPAs are placed, then outcomes may vary. For instance, MPAs placed
in low productivity areas may have little effect on the distribution of
fishers, limiting the impact of those MPAs (Edgar et al., 2004). In such
cases, baseline data is essential to be able to successfully document
these patterns. Further, as ecosystems change over time, it is crucial to
continuously monitor MPAs for effectiveness of adaptive management
practices (Pomeroy et al., 2005). Thus, to adequately quantify the
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impact of MPAs, it is essential that long-term baseline data are col-
lected.

Aerial surveys provide one approach to overcome the challenges
associated with studying management impacts over broad spatial scales
and are particularly suited for the study of MPAs where access is lim-
ited. This method has long been used in conservation biology to esti-
mate the abundance and distributions of wildlife (Pollock et al., 2006).
Here we apply these survey techniques to studying human-related ac-
tivities in critical ecological habitat. With aerial surveys, we can collect
data across large areas in a short amount of time. Further this method
has the benefit of providing data on all potential sources of fishing from
boats and does not rely on fisher reported data. Although newer tech-
nologies, such as vessel monitoring systems, can provide detailed spa-
tially-explicit fishing activities (Gerritsen and Lordan, 2011), im-
plementation of these systems across all potential types of fishing and
non-fishing vessels would be cost prohibitive. While aerial surveys can
be expensive as well, volunteer supported flight operations can con-
siderably lower the cost of these surveys. LightHawk, a nonprofit or-
ganization based in Telluride Colorado, U.S.A., coordinates flights be-
tween pilots and scientists. Such organizations represent a new
dimension of citizen science, opening new possibilities for research.

Species Distribution Modeling (SDM) (also referred to as Ecological
Niche Modeling) is becoming an increasingly popular tool in ecology
and conservation (Rodríguez et al., 2007) to study the distribution of
organisms. Using spatial locality information for a species in combi-
nation with large-scale or global environmental data layers, SDMs can
be used to predict a map of the distribution of a species based on un-
derlying environmental variation (Elith and Leathwick, 2009). There
many applications of SDMs in conservation biology, such as to identify
potential habitat for endangered species reintroductions (Carroll et al.,
2003), to estimate changes in species distributions under global climate
change (Peterson et al., 2002), or to explore the potential spread of
invasive species (Yap et al., 2015; Katz and Zellmer, 2018). SDMs have
been used to study the distributions of a broad diversity of organisms,
from terrestrial animals (Bryson et al., 2016; Pelletier et al., 2014),
birds (McCormack et al., 2010), marine fish and invertebrates (Cheung
et al., 2009), plants (Zellmer et al., 2012) and even pathogens (Yap
et al., 2015), but have rarely been used to study the distributions of
human-related activities. When interacting with the environment, such
as through hunting and fishing, humans may likewise have predictable
patterns that reflect the underlying environmental conditions that
structure the species they utilize. In fact, SDMs have been successfully
used to predict the distribution of species based on the environmental
conditions of their food resources (Freeman and Mason, 2015). Thus,
SDMs may be a useful tool for studying the distribution of human-re-
lated activities.

SDMs, and especially those that use a machine learning approach,
take advantage of the power within large datasets to let the data de-
termine the model (or set of environmental variables) that best de-
scribes the distribution of a species (Olden et al., 2008). This approach
is particularly useful when there are a lot of potential contributing
variables making it difficult to pre-designate models (Olden et al.,
2008). The spatial distribution of fishers is a complex problem with
many potential variables contributing (Jalali et al., 2015), thus is well
suited for a machine learning SDM approach. Being able to investigate
many different predictors allows us to go beyond just understanding
how current MPAs structure fisher distributions, and instead determine
importance of environmental predictors of where fishing is likely to
occur, helping with better design of MPAs in the future.

By design, MPAs should have a significant impact on the distribu-
tion of fishers, but what specific impact they have is less clear. By
limiting fishing and harvest within specific areas of conservation
priority, the implementation of MPAs may result in spreading out the
impacts of fishing across the entire region. Alternatively, MPAs may
cause compaction in unprotected areas, which may be a significant
deterrent to overall conservation of the region (Lester et al., 2009).

Others have suggested that no-take MPAs will result in “fishing the
line,” with fishers locating right outside the boundaries of MPAs to
catch spillover (Kellner et al., 2007). These various distributions have
different consequences for fish and invertebrate densities across space,
and therefore it is important that we understand how MPAs impact
fisher distributions (Kellner et al., 2007).

Our goals were thus to 1) determine whether fishers were adhering
to MPA boundaries and if there were any differences among fishing or
boat types, 2) test whether MPAs impact the distribution of fishers,
including their overall distributions and distance from port, and if there
were any differences among fishing or boat types and 3) evaluate the
potential use of SDMs to investigate the factors impacting the dis-
tribution of humans and human-related activities. If MPAs impact the
distribution of fishers, then we expect 1) the proportion of actively-
fishing boats observed within MPAs will decrease after MPA im-
plementation, 2) there will be decreased overlap between SDMs pre-
and post-MPA implementation, and 3) boats will be located either
closer or further from port. As a control, we compare vessels on which
there was active fishing occurring to non-fishing vessels (vessels that
are not used for fishing and were not actively engaging in fishing),
which should show no differences before and after MPA implementa-
tion, since they should not be directly affected by MPAs.

2. Methods

2.1. Study site

The Southern California Bight (SCB) has had a long history of
fishing management, as it is a highly productive marine ecosystem
(Horn et al., 2006; Horn and Allen, 1978; Hubbs, 1960; Pondella et al.,
2005) located next to one of the largest cities on the west coast of the
United States with extensive commercial and recreational fishing
(Zellmer et al., 2018). A total of 50 MPAs (known as the South Coast
MPAs) have been established in southern California in two efforts, the
northern Channel Islands in 2002 and the mainland coast in 2012.
Currently there are 25 MPAs on the islands including the southern
Channel Islands (established in 2012 as part of the mainland effort) and
25 along the mainland coast. The established MPAs set aside habitat
with little to no fishing or marine extraction.

2.2. Aerial surveys

We conducted aerial surveys to collect spatially explicit data re-
garding the distribution, type and activity of vessels operating in state
waters following the implementation of MPAs in the south coast region.
These surveys were conducted via two transects along the southern
California coast starting in September of 2008 encompassing 2565 km2,
approximately 3.25 years prior to the implementation of MPAs, and
continued through September of 2015. During 2008–2013, aerial sur-
veys were flown monthly, and then in 2014 the surveys occurred
quarterly. The northern transect ran from Santa Monica Bay north to
Point Conception, while the southern transect ran from Santa Monica
Bay south to the Mexican border. The aerial surveys covered 19 MPAs
along the mainland southern California coast.

Small aircraft capable of high maneuverability and low speeds were
used to fly directly over vessels while survey personnel searched for,
identified, and recorded data on all vessels spotted within approxi-
mately 4.82 km (3 miles) of the shoreline along each transect. The
collection of data from small fixed-wing aircraft allow for a transect to
be completed in approximately two to two and one half hours de-
pending on number of vessels encountered and other factors e.g.,
weather, airspace restrictions. Depending on weather conditions, air-
craft were flown at an altitude of 152–254m (500′ to 1000’) and travel
at 185–222 km/h (100–120 knots). Volunteer pilots, coordinated by
LightHawk, flew the aircraft for each of the surveys.

The survey team consisted of a pilot, spotter, GPS technician and
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photographer. Some of the planes are incapable of carrying a pilot plus
three passengers; in this circumstance, the spotter adopted the photo-
grapher role. The spotter directed the pilots’ flight path to intersect the
vessels on the water, described the type and activity of the vessel at
time of contact and directed the GPS technician to enter a point and
corresponding information into the computer. When possible, the
photographer captured a photograph of the vessel(s) to aid in post flight
QA/QC (Quality Assurance Quality Control). The spotter, aided by bi-
noculars or telephoto camera lens, was trained in and familiar with the
various boat types and activities in which boaters engage in the south
coast region to assure accurate classifications.

The GPS technician recorded the vessel data into a GPS data dic-
tionary along with the date, time, GPS location, and any relevant notes.
For each vessel, researchers classified the fishing type (commercial,
recreational, or commercial non-fishing; Table S1), identified the boat
type (e.g., Sport Fishing Boat; Table S2), and recorded the activity oc-
curring on the boat (e.g., fishing, anchored, in transit). Ideally, vessel
positions were not logged until survey planes were directly overhead
for highest spatial accuracy. In areas with high vessel density or re-
stricted airspace, where logging vessels individually was infeasible,
multiple boats were logged to a single representative point and later
extracted using GIS.

2.3. Analyses

To evaluate the impact of MPAs on the distribution of fishing ves-
sels, we 1) evaluated the probability of observations occurring inside or
outside MPA boundaries, 2) created distribution models to visualize
fishing vessel distributions across the bight, and 3) evaluated the
change in distance to nearest port for each observation. We limited our
analyses to only boat types that had a least 10 observations both before
and after MPA-implementation that were actively fishing (for
Commercial and Recreational boats) or not actively fishing (for Non-
Fishing boats). The distributions of Non-Fishing boats were used as a
control, since the distributions of these vessels should be less impacted
by the presence of MPAs. Statistical analyses were completed in R v
3.0.1 (R Development Core Team, 2013).

2.3.1. Summary statistics
We calculated summary statistics for all vessels observed, for both

fishing type (Commercial, Recreational, and Non-Fishing Vessels; Table
S3) and boat type (Table S4) before and after the implementation of
MPAs. The total number of observations for vessels that were actively
fishing were also calculated. The proportion of vessels observed within
each MPA was determined by taking the number of vessels observed in
the MPA divided by the total number of vessels observed for each boat
type to account for variation in sampling effort between time periods.

2.3.2. Observations in MPAs
To evaluate the success of MPAs in limiting fishing within their

boundaries, we used logistic regression to test whether there was a
statistically significant effect of MPA-implementation on the probability
of a boat being observed within MPA boundaries. In addition, we tested
whether this probability differed between different fishing types and
whether there was an interaction between MPA-implementation and
fishing type.

2.3.3. Distribution modeling
For a more comprehensive analysis of the impact of MPAs on the

distribution of fishers within southern California, we used the locations
recorded in the aerial survey data to create distribution models (SDMs)
of fishers before and after the implementation of MPAs. SDMs are ty-
pically used to construct a map of the variation in predicted probability
of habitat suitability for a species based on the observed locations of
that species in conjunction with a set of spatially-explicit environmental
data layers. This method proceeds by evaluating the environmental

conditions at each of the observed locations, building a statistical model
to describe the set of environmental conditions that best suit the spe-
cies, and then extrapolating that model over all regions in the map. We
applied this method to each boat type that had at least 10 observations
both before and after MPA-implementation that were within the extent
of the environmental data. Observations with coordinates outside the
extent of the environmental layers were dropped from SDM analyses.

We created all SDMs using MaxEnt v. 3.3 (Phillips et al., 2006) using
19 spatial environmental data layers describing the region, including:
bathymetry, 17 biogeophysical variables from the MARSPEC dataset
(Sbrocco and Barber, 2013), and presence of MPAs. All variables were
treated as continuous variables except for the presence of MPAs, which
was categorical. SDMs were trained with a random 80% of the ob-
servation data and tested with the remaining 20% of the data. The
SDMs were evaluated using the AUC scores, with successful SDMs
having scores closer to 1. To quantify whether MPA presence was as-
sociated with fisher distributions both before and after MPA im-
plementation, we quantified the proportion of variance explained by
each variable to see if the proportion increased following MPA im-
plementation.

We evaluated the change pre- and post- MPA both visually and
quantitatively. To visualize the change, we created a new raster layer to
describe the change in predicted probability of habitat suitability before
and after MPA-implementation by subtracting the pre-SDM from the
post-SDM. Values less than zero represent pixels where the predicted
habitat suitability decreased after MPA-implementation, while values
greater than zero represent pixels where the predicted habitat suit-
ability increased. To quantify whether there was a statistically sig-
nificant change in the distribution of fishers before and after MPA im-
plementation, we calculated Schoener's D values using the ENMeval R
package (Muscarella et al., 2014).

To evaluate whether there was an overall shift in fisher distributions
or if there were differences between fishing vessel types (e.g.,
Commercial, Recreational, Non-Fishing vessels) we created summary
datasets of 1) all actively fishing vessels, 2) all actively fishing
Commercial vessels, 3) all actively fishing Recreational vessels, and 4)
all Non-Fishing vessels. The summary SDMs were created by adding
together the individual SDMs for each boat type within the fishing ca-
tegory and then dividing by the total number of SDMs added together.

2.3.4. Distance to nearest port
To evaluate whether MPA implementation increased the distance

that fishing vessels need to travel, we calculated the distance to the
nearest port for each observation. Distances were calculated to a central
location at the mouth of each major port along the mainland coast of
California using the sp Package in R (Pebesma and Bivand, 2005).
Distance to nearest port was then log10 transformed. The data were
visually evaluated for equal variances. We used ANOVA to evaluate the
significance of MPA implementation, fishing type, and the interaction
between MPA implementation and fishing type on the variation in
distance to nearest port. We also assessed the statistical significance of
MPA implementation on distance to nearest port for each boat type. As
variances could not be assumed to be equal between boat types, we
conducted Welch's one-way analysis of means for each boat type. We
used a sequential Bonferroni adjustment to correct significance values
for multiple tests (Rice, 1989).

3. Results

3.1. Summary statistics

There were a total of 13,558 vessel observations over 102 ob-
servation days between September 1, 2008 and September 22, 2015
(Tables S1–S2; Fig. S1). Of those observations, 1944 actively fishing
Commercial and Recreational vessels and Non-Fishing vessels were
observed before the implementation of MPAs on January 1, 2012 and
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2838 vessels after implementation for which we had at least 10 ob-
servations per boat type for each time period (Tables S3–S4).

3.2. Observations in MPAs

Prior to MPA implementation 17.5% of observations were within
the boundaries of MPAs, whereas after MPA implementation 11.4% of
observations were within the boundaries of MPAs (Figs. S2–S4). The
logistic model indicated that MPA-implementation, fishing type, and
the interaction between MPA-implementation and fishing type were all
statistically significant predictors of the probability of a vessel being
observed within the boundaries of an MPA (Figs. 1–2; Table 1). The
proportion of observations within MPA boundaries decreased for both
Commercial and Recreational vessels, but remained constant for Non-
Fishing vessels (Fig. 1). After MPA-implementation, the proportion of
actively fishing Commercial vessels inside MPAs decreased to the pro-
portion of Non-Fishing vessels inside MPAs, while the proportion of
actively fishing Recreational vessels inside MPAs decreased but not as
low as the Non-Fishing vessels (Fig. 1).

3.3. Distribution models

The distribution models generally had high AUC scores, with all test
scores above 0.93 and all but two (out of 28) training scores above 0.87
(Table S5). Across the entire study area, there were shifts in the dis-
tributions of fishers pre- and post-MPA implementation for all fishing
and boat types (Table 2, Supplementary Figs. 5–22). Within MPAs
specifically, the average change in predicted probability of habitat
suitability following the implementation of MPAs for all actively fishing
boat types was −0.03, from an average predicted probability of habitat

Fig. 1. Proportion of Boats Observed in MPA boundaries
before and after MPA-implementation by Fishing Type.
Proportion of boats observed inside MPA boundaries before
(red triangles) and after (blue circles) MPA-implementation.
Only boats types with at least 10 observations before and
after MPA implementation were included. (For interpreta-
tion of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 2. Proportion of Boats Observed in MPA boundaries
before and after MPA-implementation by Boat Type.
Proportion of boats observed inside MPA boundaries before
(red triangles) and after (blue circles) MPA-implementation.
Only boats types with at least 10 observations before and
after MPA implementation were included. (For interpreta-
tion of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Table 1
Logistic model of the probability of observations occurring inside versus
outside MPAs. The logistic model included MPA-implementation, fishing type
(Commercial, Recreation, Commercial Non-fishing) and the interaction be-
tween MPA-implementation and fishing type.

Variable Df Deviance Resid. Df Resid. Dev P-value

MPA 1 36.03 4780 3817 1.945e-09
Fishing Type 2 66.24 4778 3751 4.141e-15
MPA*Fishing Type 2 6.53 4776 3744 0.03829
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suitability of 0.29 before MPA-implementation to 0.26 after
(Fig. 3,S19). This change was mostly led by decreases in predicted
habitat suitability in MPAs for commercial fishers (−0.05; Fig. 3,S20)
more so than recreational fishers (−0.01; Fig. 3,S21). In comparison,
for non-fishing boats, the average change in predicted probability of
habitat suitability inside MPAs following the implementation of MPAs
was 0, from an average predicted probability of habitat suitability of
0.19 before MPA-implementation to 0.19 after (Fig. 3,S22). Different
boat types showed varying changes in mean predicted probability of
habitat suitability inside MPAs (Fig. 4, S5-S18).

3.4. Distance to nearest port

There was little change in the average distance to port for either
commercial or recreational fishers as well as non-fishing boats (Fig.
S23). Commercial fishers were on average further from port (10.8 km)
than recreational fishers (9.4 km) before and after MPA-implementa-
tion. Non-fishing vessels were only slightly further from the nearest port
before MPA-implementation (10.2 km) than after (9.2 km). There was
neither a statistically significant main effect of MPA-implementation

nor an interaction between MPA-implementation and vessel type on the
distance to the nearest port, although fishing type was significantly
associated with distance to nearest port (ANOVA: p = 1.7*10−6;
Table 3). When comparing the difference before and after MPA-im-
plementation for each boat type, only Support Vessels showed a sta-
tistically significant difference (one-way analysis of means: p=0.0009;
Table S6). Support Vessels were on average closer to port after MPA-
implementation (12.2 km) than before (14.9 km).

4. Discussion

4.1. Do MPAs successfully reduce fishing?

Quantifying the impacts of management activities on human ac-
tivities in critical ecological habitat is a challenge because of the
complex relationship between humans and environmental resources
and requires novel and integrative approaches. Here we test the use of
aerial surveys paired with distribution modeling to evaluate the success
of MPAs in reducing fishing within MPA boundaries and impacting
fishing distributions outside the boundaries. Our results demonstrate
that in general, MPAs have been successful in limiting fishing. Overall

Table 2
Schoener's D comparison of overlap in SDMs pre- and post-MPA im-
plementation. No overlap (D=0), complete overlap (D=1). Results are
shown for individual boat types and for summarized across fishing types in-
cluding all commercial, all recreational, all actively fishing boats (Commercial
& Recreational), and all commercial non-fishing boats.

Fishing Type Boat Type D

Commercial Net Boat 0.76
Trap Boat 0.76
Urchin Boat 0.75

Recreational CPFV 0.75
Kayak 0.72
Rec Power Boat 0.85
Sailboat 0.67
Sport Fishing Boat 0.84

Non-fishing Large Vessels 0.62
Lifeguard 0.64
Other 0.69
Passenger Boat 0.52
Research-Military-Enforcement 0.68
Support Vessel 0.70

All Commercial 0.82
All Recreational 0.87
All Non-fishing 0.84
All Fishing 0.87

Fig. 3. Predicted probability of habitat suitability inside MPA boundaries
before and after MPA-implementation based on Fishing Type. Average
predicted probability of habitat suitability was calculated for each MPA by
taking the average predicted probability of habitat suitability for all pixels
within the boundary of the MPA for each boat type. Pre-MPA (red) and post-
MPA (blue) averages are shown. Statistical analyses were not completed due to
non-independence. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 4. Average predicted probability of habitat suitability inside MPA
boundaries before and after MPA-implementation based on Boat Type.
Average predicted probability of habitat suitability was calculated for each
MPA by taking the average predicted probability of habitat suitability for all
pixels within the boundary of the MPA for each boat type. Pre-MPA (red) and
post-MPA (blue) averages are shown. Statistical analyses were not completed
due to non-independence. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Table 3
Results from ANOVA to test whether distance to nearest port is predicted
by MPA implementation (MPA) or Fishing type. Distance to port was log 10
transformed.

Variable Df Sum Sq Mean Sq F-value P-value

MPA 1 0.1605 0.1605 1.299 0.2545
Fishing Type 2 3.29 1.645 13.31 1.718e-06
MPA*Fishing Type 2 0.2468 0.1234 0.9983 0.3686
Residuals 4776 590.3 0.1236
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there was a decrease in fishing prevalence within MPAs after MPA
implementation for both commercial and recreational fishers (Fig. 1;
Table 1). Similarly, predicted probability of habitat suitability based on
SDMs showed a trend for decreased fishing within MPA boundaries
following MPA implementation (Figs. 3 and 5). Despite the difficulty in
enforcing fishing and extraction restrictions across large marine areas
(Edgar et al., 2004), our results provide some evidence that fishers as a
whole appear to be responding as desired.

4.2. Do MPAs impact Fisher distributions?

In addition to reduced presence within MPAs, our results further
suggest that overall fisher distributions quantitatively shifted. Pre- and
post- MPA SDMs differed for all fishers (Table 3; Fig. 5). Interestingly,
distributions shifted for all boat types, regardless of whether it was a
fishing boat. This result suggests that all boaters, including those on
non-fishing vessels, may be responding to the MPAs in some way and is
consistent with expectations that MPAs may significantly impact dis-
tributions of all boaters beyond just fishers. For example, compaction of
fishing vessels outside of MPAs may cause non-fishing boats to shift to
new areas. Even if fish are not being harvested on these boats, the
presence of boats in these new areas could have negative impacts on
marine ecosystems due to disturbance and pollution.

Yet, while all boats showed a shift in their overall distributions, only
actively fishing commercial and recreational boats showed a trend to-
ward reduced habitat suitability within MPAs specifically. Commercial
boats showed the greatest decrease in predicted probability of habitat
suitability within MPAs, which decreased to the same level as non-
fishing boats (Fig. 3). Recreational fishing boats had the highest pre-
dicted probability of habitat suitability and remained the highest after
MPA implementation (Fig. 3). These results suggest that there may be
important differences in both usage of MPAs and enforcement of reg-
ulations for these groups, and thus may require different approaches to
education about MPAs. However, even within these fishing types there
was a high amount of variation (discussed below), indicating that the
impact of MPAs may vary depending on the specific vessel type. Taken
together, these results suggest that the impact of MPAs on boaters is
complex and demonstrates the importance of baseline monitoring on
individual fishing types to understand vessel-specific impacts.

Since the differences in the SDMs before and after MPA im-
plementation fit our predictions and are in line with results from the
observed data, it suggests that we can capture important changes in the
distribution of vessels in response to environmental changes. While

used extensively for studying the distributions of non-human organ-
isms, few if any studies that we are aware of have used SDMs to study
the distribution of specific groups of humans and particularly in the
context of environmental pressures. This tool could be a powerful
method for conservation biologists to create spatially-explicit models of
human impacts on ecosystems and to inform management policies and
practices. Our study thus represents a novel use of SDMs to quantify
important shifts in the distributions of human activities.

While there were clear associations between MPA implementation
and the distribution of vessels inside MPA boundaries, the impacts of
MPA implementation on other measures of vessel distribution were less
clear. MPAs could potentially force fishers to travel further from ports
to access fishing locations, resulting in higher expenditures on fuel.
However, our results suggest that on average distance to port did not
change for either commercial or recreational boats (Fig. 6). Further
there was little evidence for individual boat types of a significant shift
in distance to nearest port (Table S6, Fig. 7). The only boat type that
statistically significantly shifted over time was Support Vessels
(p=0.0009). Thus, while the implementation of MPAs is clearly as-
sociated with a shift in fisher distributions, this shift does not appear to
simply be shifting fishers further from ports. However, our analyses are
restricted to within three miles of the shoreline and do not include
fishing along more distant islands. It is therefore possible that if MPA-
implementation is shifting fishers outside this three-mile buffer along
the mainland or to offshore islands, then we would not be able to detect
an effect. Future research should investigate the potential movement of
fishers to these more distant locations.

4.3. Other predictors of Fisher distributions

Beyond MPA presence, additional variables were associated with
the presence of fishing (Table S5). Across all boat types, distance to
shore (BIOGEO5; average percent of variance=45.3) and bathymetry
(average=21.4) were the greatest predictors of vessel presence, and at
least one or both was the greatest predictor across most boat types. In
addition, slope (BIOGEO6) was a consistent predictor for fishing boats
(average=4.8) and some non-fishing boats. MPA presence was a low
predictor for most boat types both pre- and post-MPA (average= 0.6).
In contrast, maximum salinity was a consistent predictor for non-fishing
boats (average=9.4). These results suggest that access to fishing sites
and quality of habitat where species are found may be contributing to
the distribution of fishers across the SCB. These results suggest that
SDMs could be used to identify areas where MPAs may have the biggest

Fig. 5. Change in predicted probability
of habitat suitability from SDMs before
and after MPA-implementation for all
actively fishing Commercial and
Recreational vessels combined. Change
calculated by subtracting pre-MPA pre-
dicted probability of habitat suitability from
post-MPA suitability, with increase (blue),
decrease (red), and no change (light gray).
MPAs were implemented in 2012 (light gray
solid lines). (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the Web version of this
article.)
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impact on fishing.

4.4. Variation among fishing and boat types

The success and impact of MPAs depended on the type of boat
evaluated (Table 1). We discuss a few of these boats types to illustrate
variation in the dataset. Of the actively fishing commercial vessels,
urchin fishers demonstrated the greatest response associated with the
implementation of MPAs (Fig. 2; Fig. S7), trap boats had an inter-
mediate amount of change (Fig. 2; Fig. S6), and net boats showed the
smallest change (Fig. 2; Fig. S5). These differences appear to be due to
the initial use of MPA regions before MPAs were implemented, as the
total change increases with increasing initial proportion within MPA
regions.

For recreational fishers, there was more variability in the magnitude
and types of responses to MPA implementation. Both CPFVs (Fig. S8)
and Sport Fishing Boats (Fig. S12) showed the largest decrease (Fig. 2).
Kayaks (Fig. S9) and Rec Power Boats (Fig. S10) had intermediate de-
creases while still remaining prevalent within MPAs (Fig. 2). Sailboats
had the smallest change although were not present in high numbers in
MPA regions to begin with (Fig. 2; Fig. S11). The more varied responses
for recreational fishers may stem from greater difficulties in education
surrounding MPAs with the diverse types of recreational fishing that
occurs.

Together, our results suggest that response of fishers to MPA-im-
plementation is associated with the type of fishing occurring.
Commercial fishers showed greater reductions in the proportion of
boats observed within MPAs (Fig. 1) and predicted habitat suitability
within MPAs (Fig. 3) than recreational fishers. These varied responses
may reflect a number of differences inherent to commercial and re-
creational fishers. One hypothesis is that the costs associated with not
respecting the law may be greater for commercial fishers who rely on
their catch for their livelihood. Additionally, there may be differences
in both education and enforcement among the fishing types. For ex-
ample, recreational fishers may be more likely to travel from outside
the region for fishing opportunities and thus be less familiar with local
regulations. Perceptions toward and awareness of MPAs has been linked
to visitor profiles, including place of residence (Petrosillo et al., 2007).
Future studies should focus on effective measures of education and
enforcement for different fisher profiles.

Fig. 6. Change in mean distance to nearest port by fishing type. Pre-MPA (red), Post-MPA (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 7. Change in mean distance to nearest port by boat type. Pre-MPA
(red), Post-MPA (blue). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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4.5. Caveats

Although the results demonstrate notable differences in fisher dis-
tributions and use of MPA areas in conjunction with the implementa-
tion of the 25 MPAs in the Southern California Bight, there are lim-
itations to consider with natural experiments such as this one.
Alternatively, changes in fisher distributions could be in response to
other changes to the region over the time period of the study, such as
changes in fish populations and distributions, environmental condi-
tions, or socioeconomic pressures. However, we detected differences in
how fishing and non-fishing vessel distributions changed over the
course of the study, supporting our initial hypothesis that fisher dis-
tributions would be impacted by MPAs. Further, we note that many
fishing vessels, although not all, showed similar distributional changes
following MPA-implementation, with decreased predicted habitat
suitability and observed presence within MPAs, which is suggestive of a
response to MPAs rather than environmental or fishing conditions.
While our results suggest a role of MPAs in the distribution of fishers in
southern California, these external factors are likely to play at least
some role in the changes in fisher distributions and use of MPA areas as
well. How MPA implementation interacts with external factors such as
environmental change should be an important focus of study for future
research.

4.6. Conclusions

Evaluating the impact of MPAs on the distribution of fishers is
crucial for assessment of management and conservation programs. We
used an integrated approach to collect baseline data on the distributions
of boaters in southern California and quantify shifts following the im-
plementation of MPAs. Our results demonstrate the utility of both in-
tegrative approaches and distribution modeling for studying the re-
sponse of human activities to management programs. Distribution
modeling could be used to study human-environment interactions in a
wide variety of scenarios, including but not limited to fishing, hunting,
resource extraction, and habitat modification. Further our research
highlights the importance of baseline data for conservation, providing
the necessary data for evaluating conservation successes and failures.
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